Preliminary communication

MIXED LIGAND PLATINUM COMPLEXES AS HYDROGENATION CATALYSTS

HOWARD C. CLARK*, CLAUDE BILLARD and CHUN S. WONG

Guelph-Waterloo Centre for Graduate Work in Chemistry, Guelph Campus, University of Guelph, Guelph, Ontario N1G 2W1 (Canada)

(Received December 18th, 1979)

Summary

PtLL'Cl₂ (L = PPh₃, L' = sulphides, amines) are more effective catalysts for the hydrogenation of styrene to ethylbenzene, in the presence of $SnCl_2 \cdot 2H_2O$ than PtL₂Cl₂ or PtL'₂Cl₂; this effect is attributed to the ability of the weaker ligand L' to function as a leaving group in the catalytic hydrogenation cycle.

One valuable aspect of mixed-ligand platinum(II) complexes [1] of the type $PtLL'X_2$ (L,L' = Group V or VI ligands) lies in the opportunity they offer to study the effect on chemical properties of varying just one ligand, L or L'. The complexes PtL_2Cl_2 , L = phosphine, arsine or sulphide, have been used extensively as catalysts for the hydrogenation of olefins [2] in the presence of $SnCl_2 \cdot 2H_2O$. In this communication we describe some studies of the catalyzed hydrogenation of olefins using $PtLL'Cl_2/SnCl_2 \cdot 2H_2O$ as catalyst. We show that not only can ligand effects on catalytic activity be examined by varying systematically just one ligand L', but also that by suitable choice of ligands, catalytic activity can be greatly enhanced, surpassing that of the corresponding bis-ligand complexes.

The results of the catalytic hydrogenation of styrene to ethylbenzene at 60°C, 600 psi H₂ in acetone using various PtLL'Cl₂/SnCl₂ \cdot 2H₂O catalysts are summarized in Tables 1 and 2. Table 1 shows the effect of varying the SnCl₂ \cdot 2H₂O concentration on catalytic activity.

Unlike the $PtL_2Cl_2/SnCl_2 \cdot 2H_2O$ systems, which exhibit [3] maximum catalytic activity at $[SnCl_2]/[Pt] = 10$, the mixed ligand system has maximum activity at $[SnCl_2]/[Pt] = 2$ for $L = Ph_3P$, $L' = SMe_2$ or $L = PPh_3$, $L' = p-CH_3PhNH_2$. A value of 2 for Sn/Pt was therefore used for all subsequent catalytic hydrogenation studies using mixed ligand complexes as catalysts. Presumably these different Sn/Pt ratios just reflect differences in the equilibria between the chloride and SnCl₃ complexes perhaps influenced by the different *trans* effects of the ligands. Several notable trends are apparent from an inspection of Table 2:

1. The dependence on the electronic effect of L, L = phosphine, is the same

C106

TABLE 1

CATALYTIC HYDROGENATION OF STYRENE TO ETHYLBENZENE US	SING P	tLL'Cl ₂ /SnCl ₂ •2H	I20
AS CATALYST AT 60°C, 600 psi H., 2 h IN ACETONE. EFFECT OF SnCl.	, •2H,O) CONCENTRAT	ION

Catalyst	[SnCl ₂ ·2H ₂ O]/[Pt]	T.N. obtained
Pt(PPh ₃)(SMe ₂)Cl ₂	1	4090
Pt(PPh ₃)(SMe ₂)Cl ₂	2	6860
Pt(PPh,)(SMe,)CL,	3	3930
Pt(PPh,)(SMe,)Cl,	5	2760
Pt(PPh,)(p-CH,PhNH,)Cl,	1	2700
Pt(PPh_)(p-CH_PhNH_)Cl_	2	7040
Pt(PPh,)(p-CH,PhNH,)Cl,	3	6800
Pt(PPh,)(p-CH,PhNH,)Cl,	4	6000
Pt(PPh3)(p-CH3PhNH2)Cl2	5	5100
Pt(PPh,)(p-CH,PhNH,)Cl,	6	4680
Pt(PPh,)(p-CH,PhNH,)Cl,	8	4640
Pt(PPh ₃)(p-CH ₃ PhNH ₂)Cl ₂	10	4720

TABLE 2

CATALYTIC HYDROGENATION OF STYRENE IN ACETONE, AT 600 psi, 60°, 2 h, USING PtLL'Cl₂ / $2SnCl_2$ ·2H₂O AS CATALYST^a

L	L'	Total T.N.
P(p-CH, OPh),	as L	1820 ^b
P(p-CH, Ph)	as L	1660 ^{<i>b</i>}
PPh.	as L	1600 ^b
P(p-ClPh),	as L	850 ^b
P(p-FPh)3	as L	810 ^{<i>b</i>}
P(p-CH, OPh),	SMe,	8210
P(p-CH,Ph),	SMe ₂	7450
PPh ₃	SMe.	6860
P(p-FPh)	SMe,	51 70
PPh ₃	p-NH,PhOCH,	6610
PPh,	p-NH,PhCH,	7030
PPh ₃	NH ₂ Ph	7460
PPh ₃	p-NH ₂ PhCl	7960
PPh ₃	p-NH, PhNO,	8880
PPh,	SEt,	8160
PPh ₃	SPh,	8570
PPh ₃	S(p-PhCl) ₂	8680
p-NH ₂ PhNO ₂	as L	680
SMe ₂	as L	370 ^c

^a [styrene]/[Pt] = 10 000. ^b 10 SnCl₂·2H₂O used. ^c There is also some polymerization, estimated 940 equivalent of styrene polymerized.

for both PtL_2Cl_2 and $PtLL'Cl_2$, i.e., electron donating *p*-substituents enhance catalytic activity.

2. In the mixed ligand complexes, the weaker coordinating ligand L' (L' = amine, compared to the stronger coordinating $L = PPh_3$) exhibits the opposite dependence of catalytic activity on electronic effects. Thus in the amine series, the effectiveness of the catalyst increases as the basicity of the amine decreases.

3. Generally, the mixed ligand complexes, containing one strong ligand, e.g. phosphine, and a weak ligand, e.g. amine, or sulphide, are more effective as catalysts than their corresponding bis(ligand) complexes. Thus, the catalytic activity of $Pt(PPh_3)(SMe_2)Cl$ is more than four times greater than that of $Pt(PPh_3)_2Cl_2$ and 20 times greater than $Pt(SMe_2)_2Cl_2$. Similarly, $Pt(PPh_3)$ -(p-NO₂PhNH₂)Cl₂ is more effective that either $Pt(PPh_3)_2Cl_2$ or $Pt(p-NO_2PhNH_2)_2Cl_2$.

The fact that the two ligands L and L' show different dependences on the electronic properties of the *p*-substituents suggests that they function quite differently in the catalytic cycle. The increase of catalytic activity with decreasing basicity of the weaker ligand L' further suggests that L' functions as a leaving group. This is supported by the ¹H NMR spectrum of cis-Pt(PPh₃)(SMe₂)Cl₂ and $SnCl_2 \cdot 2H_2O$ in CD_3COCD_3 . In the absence of $SnCl_2 \cdot 2H_2O$, the SMe₂ resonance appears as a sharp singlet with ¹⁹⁵Pt satellites (δ 2.48 ppm, J(PtH) 50.8 Hz). On addition of one equivalent of $SnCl_2 \cdot 2H_2O$ at room temperature, the SMe_2 resonance became broad and the ¹⁹⁵Pt satellites are not observable. However, at -60° C two SMe₂ resonances were observed, both with ¹⁹⁵Pt satellites, presumably due to two isomers (δ 2.60 ppm, ³J(PtH) 46.4 Hz (major); δ 2.45 ppm, 3 J(PtH) 46.9 Hz). Thus, at ambient temperatures, the SMe₂ in the complex is labile in the presence of SnCl₂. The importance of creating a vacant coordination site in effecting certain chemical reactions has been well documented [4]. In many catalytic hydrogenation systems, e.g. with Wilkinson's catalyst, $Rh(PPh_3)_3Cl [5-7]$, dissociation of a ligand or its displacement by the substrate, is one of the important steps in the catalytic cycle. Thus, in the mixed ligand complexes, the introduction of a weak ligand affords a means of enhancing the catalytic activity of a catalyst, and also demonstrates a new approach to catalyst tailoring.

The present results also describe a different role for the $SnCl_3$ ligand which has previously been thought [8] to act as co-catalyst through its ability to stabilize low energy five coordinate platinum(II) intermediates. The role described here, i.e. labilization of the *trans* ligand, is however, fully consistent with the high *trans* effect [8] of the $SnCl_3$ ligand.

Further study on these interesting systems, particularly with the aim of elucidating the detailed mechanism, is in progress.

The financial support of the Natural Science and Engineering Research Council of Canada is acknowledged.

References

- 1 H.C. Clark, A.B. Goel and C S. Wong, J. Organometal. Chem., 190 (1980) C101.
- 2 B.R. James, Homogeneous Hydrogenation, Wiley, New York, 1973.
- 3 H.A. Tayim and J.C. Bailar, Jr., J. Amer. Chem. Soc., 89 (1967) 3420.
- 4 H.C. Clark, C.R.C. Milne and C.S. Wong, J. Organometal. Chem., 136 (1977) 265 and ref. therein.
- 5 J.A. Osborn, F.H. Jardine, J.F. Young and G. Wilkinson, J. Chem. Soc. A, (1966) 1711.
- 6 P. Meakin, J.P. Jesson and C.A. Tolman, J. Amer. Chem. Soc., 94 (1972) 3240.

7 J. Halpern, T. Okamoto and A. Zakhariev, J. Mol. Catalysis, 2 (1976) 65.

8 R.D. Cramer, R.V. Lindsey, Jr., C.T. Prewitt and U.G. Stolberg, J. Amer. Chem. Soc., 87 (1965) 658.